Free-Radical Approach to C-C Bond Formation on a Trifluoromethyl-Substituted Carbon. Intramolecular Cyclization

Tsutomu MORIKAWA, Masayuki UEJIMA, and Yoshiro KOBAYASHI*

Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji,

Tokyo 192-03

A trifluoromethyl-substituted carbon radical, generated by radical deoxygenation of α -trifluoromethyl alcohol, intramolecularly formed C-C bond to give a five- or six-membered cyclic compound.

Free-radical mediated reactions have a number of advantages over more familiar ionic reactions. For example, radicals containing a leaving group on the β -carbon atom can be used for C-C bond formation without undesirable competitive β -elimination reactions that are sometimes encountered in anionic counterparts. C-C bond formation on a trifluoromethyl (CF3)-substituted carbon via ionic reaction is problematic; carbanion (1) induces β -elimination of a fluoride anion, and generation of carbocation (2) is very difficult owing to marked electron-withdrawing effect on its stability. Thus, an efficient method for C-C bond formation on a

$$-\overset{-}{C} \xrightarrow{\downarrow} \overset{+}{C} F_{2} \qquad -\overset{+}{C} \xrightarrow{-} \overset{+}{C} F_{3} \qquad -\overset{\circ}{C} \xrightarrow{-} CF_{3} \qquad \overset{\circ}{2}$$

CF $_3$ -substituted carbon is required in organofluorine chemistry. Approach to this problem through the intermediary carbon radical ($\underline{3}$) should be effective. This paper reports a method for the generation of a CF $_3$ -substituted carbon radical by deoxygenation of the α -trifluoromethyl alcohol (CF $_3$ CHOH-), and its reaction leading to intramolecular C-C bond formation. ²)

 α -Trifluoromethyl alcohol derivatives ($\underline{4}$) containing a suitably placed acceptor double bond were prepared as substrates. The radical deoxygenation of the α -trifluoromethyl alcohol moiety of $\underline{4}$ was successfully carried out using the O-thiocarbonylimidazolide derivatives ($\underline{5}$). Alcohol derivatives ($\underline{4}$) were treated with 1,1'-thiocarbonyldiimidazole in tetrahydrofuran at reflux temperature until the starting material was consumed to afford O-thiocarbonylimidazolides ($\underline{5}$) in high yields (94% - 97%).

624 Chemistry Letters, 1989

Radical reaction of $\underline{5}$ with tributyltin hydride (Bu₃SnH, 1.1 equiv.) and azobisisobutyronitrile (AIBN, catalytic amount) in benzene at reflux temperature gave the cyclized product. The results are shown in the Table 1. In the case of $\underline{5a}$, cyclization proceeded in 5-exo mode to give 1-decyl-2-trifluoromethylcyclopentane ($\underline{6a}$) as a stereoisomeric mixture in 83% yield. Similarly, the radical cyclization of $\underline{5b}$, $\underline{5c}$, and $\underline{5d}$ gave regioselectively CF₃-substituted cyclopentanes ($\underline{6b}$, $\underline{6c}$, and $\underline{6d}$), respectively. In these radical reactions, the CF₃-substituted carbon radical effectively promoted C-C bond formation and no side reaction was detected. Sixmembered ring compounds ($\underline{6e}$, $\underline{6f}$, and $\underline{6g}$) were obtained in 25% - 48% yield. A competitive reaction leading to the reduction product ($\underline{7}$) reduced the yield of the cyclized product in these 6-exo mode closures.

Table 1. The Reaction of O-Thiocarbonylimidazolides (5) with Bu3SnHa)

Starting material ^{b)}		Time/h	Product(s) (Yield/%) ^{C), d)}	
CF ₃ YOX /\(\sigma_R\)	5a R=n-C9 ^H 19	4.5	A 07	<u>6a</u> (83)
X = CN_N	5b R=n-C6H13	3	CF_3 $6a-d$	<u>6b</u> (66)
	5c R=CH2OCOPh	3		<u>6c</u> (81)
	5d R=Ph	2		<u>6a</u> (69)
CE ³ OX	R <u>5e</u> R=Ph	4.5	CF ₃ + CF ₃ \\	<u>6e</u> (48), <u>7e</u> (8)
	5f R=CH2OCOPh	3.5	R 6e', f 7e R	6f (48) ^{e), f)}
CF ₃	<u>5g</u> R=Ph R	7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>6g</u> (25), <u>7g</u> (34)

a) Reactions were carried out in 0.015 - 0.085 mol dm⁻³ solutions except for the case of $\underline{5f}$. b) A mixture of E- and Z-isomers. c) All the products obtained gave satisfactory spectral data. d) The ratios of stereoisomers were determined by GLC: $\underline{6a}$ (1:1), $\underline{6b}$ (1:1), $\underline{6c}$ (1:1), $\underline{6d}$ (1.1:1), $\underline{6d}$ (1.1:1), $\underline{6d}$ (1.1:1), $\underline{6d}$ (1.3:1), $\underline{6f}$ (1.4:1), $\underline{6g}$ (1.5:1). e) The yield of $\underline{7f}$ was not determined. f) High dilution method (0.002 mol dm⁻³) using the syringe pump technique was employed.

The present method for generating the carbon radical $(\underline{3})$ is synthetically useful since the α -trifluoromethyl alcohol moiety can be easily prepared by hydride reduction of the trifluoromethyl ketone (CF $_3$ CO-) or Grignard reaction with trifluoroacetaldehyde (CF $_3$ CHO). This work demonstrates the synthetic potential of the CF $_3$ -substituted carbon radical for intramolecular C-C bond formation. References

- 1) Recent reviews: B. Giese, "Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds," Pergamon Press, Oxford (1986); M. Ramaiah, Tetrahedron, 43, 3541 (1987); D. P. Curran, Synthesis, 1988, 417 and 489.
- 2) During the course of the present work, a related radical cyclization of a carbon radical bearing both CF_3 and Cl-substituents was reported. Y. Watanabe, T. Yokozawa, T. Takata, and T. Endo, J. Fluorine Chem., 39, 431 (1988).
- 3) D. H. R. Barton, R. S. H. Motherwell, and W. B. Motherwell, J. Chem. Soc., Perkin Trans. 1, 1981, 2363.

(Received January 28, 1989)